On the distribution of eigenvalues of Maass forms on certain moonshine groups
نویسندگان
چکیده
In this paper we study, both analytically and numerically, questions involving the distribution of eigenvalues of Maass forms on the moonshine groups Γ0(N), where N > 1 is a square-free integer. After we prove that Γ0(N) has one cusp, we compute the constant term of the associated non-holomorphic Eisenstein series. We then derive an “average” Weyl’s law for the distribution of eigenvalues of Maass forms, from which we prove the “classical” Weyl’s law as a special case. The groups corresponding to N = 5 and N = 6 have the same signature; however, our analysis shows that, asymptotically, there are infinitely more cusp forms for Γ0(5) than for Γ0(6). We view this result as being consistent with the Phillips-Sarnak philosophy since we have shown, unconditionally, the existence of two groups which have different Weyl’s laws. In addition, we employ Hejhal’s algorithm, together with recently developed refinements from [31], and numerically determine the first 3557 of Γ0(5) and the first 12474 eigenvalues of Γ0(6). With this information, we empirically verify some conjectured distributional properties of the eigenvalues.
منابع مشابه
Maass Forms and Their L-functions
We present examples of Maass forms on Hecke congruence groups, giving low eigenvalues on Γ0(p) for small prime p, and the first 1000 eigenvalues for Γ0(11). We also present calculations of the L-functions associated to the Maass forms and make comparisons to the predictions from random matrix theory.
متن کاملEffective Computation of Maass Cusp Forms
We study theoretical and practical aspects of high-precision computation of Maass forms. First, we compute to over 1000 decimal places the Laplacian and Hecke eigenvalues for the first few Maass forms on PSL(2,Z)\H. Second,we give an algorithm for rigorously verifying that a proposed eigenvalue together with a proposed set of Fourier coefficients indeed correspond to a true Maass cusp form. We ...
متن کاملDifferential Operators for Harmonic Weak Maass Forms and the Vanishing of Hecke Eigenvalues
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms are expected to have transcendental coefficients, we...
متن کاملProof of the umbral moonshine conjecture
The Umbral Moonshine Conjectures assert that there are infinite-dimensional graded modules, for prescribed finite groups, whose McKay–Thompson series are certain distinguished mock modular forms. Gannon has proved this for the special case involving the largest sporadic simple Mathieu group. Here, we establish the existence of the umbral moonshine modules in the remaining 22 cases. Mathematics ...
متن کاملEigenvalues-based LSB steganalysis
So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2014